uvgVPCCenc 1.0.0
uvgVPCCenc is an open-source real-time V-PCC encoder library written in C++ from scratch.
Loading...
Searching...
No Matches
Classes | Namespaces | Macros | Enumerations | Functions
nanoflann.hpp File Reference
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <future>
#include <istream>
#include <limits>
#include <ostream>
#include <stdexcept>
#include <unordered_set>
#include <vector>
Include dependency graph for nanoflann.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  nanoflann::has_resize< T, typename >
 
struct  nanoflann::has_resize< T, decltype((void) std::declval< T >().resize(1), 0)>
 
struct  nanoflann::has_assign< T, typename >
 
struct  nanoflann::has_assign< T, decltype((void) std::declval< T >().assign(1, 0), 0)>
 
class  nanoflann::KNNResultSet< _DistanceType, _IndexType, _CountType >
 
class  nanoflann::RKNNResultSet< _DistanceType, _IndexType, _CountType >
 
struct  nanoflann::IndexDist_Sorter
 
struct  nanoflann::ResultItem< IndexType, DistanceType >
 
class  nanoflann::RadiusResultSet< _DistanceType, _IndexType >
 
struct  nanoflann::Metric
 
struct  nanoflann::L1_Adaptor< T, DataSource, _DistanceType, IndexType >
 
struct  nanoflann::L2_Adaptor< T, DataSource, _DistanceType, IndexType >
 
struct  nanoflann::L2_Simple_Adaptor< T, DataSource, _DistanceType, IndexType >
 
struct  nanoflann::SO2_Adaptor< T, DataSource, _DistanceType, IndexType >
 
struct  nanoflann::SO3_Adaptor< T, DataSource, _DistanceType, IndexType >
 
struct  nanoflann::metric_L1
 
struct  nanoflann::metric_L1::traits< T, DataSource, IndexType >
 
struct  nanoflann::metric_L2
 
struct  nanoflann::metric_L2::traits< T, DataSource, IndexType >
 
struct  nanoflann::metric_L2_Simple
 
struct  nanoflann::metric_L2_Simple::traits< T, DataSource, IndexType >
 
struct  nanoflann::metric_SO2
 
struct  nanoflann::metric_SO2::traits< T, DataSource, IndexType >
 
struct  nanoflann::metric_SO3
 
struct  nanoflann::metric_SO3::traits< T, DataSource, IndexType >
 
struct  nanoflann::KDTreeSingleIndexAdaptorParams
 
struct  nanoflann::SearchParameters
 
class  nanoflann::PooledAllocator
 
struct  nanoflann::array_or_vector< DIM, T >
 
struct  nanoflann::array_or_vector<-1, T >
 
class  nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >
 
struct  nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >::Node
 
struct  nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >::Interval
 
class  nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >
 
class  nanoflann::KDTreeSingleIndexDynamicAdaptor_< Distance, DatasetAdaptor, DIM, IndexType >
 
class  nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >
 
struct  nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >
 
struct  KDTreeVectorOfVectorsAdaptor< VectorOfVectorsType, num_t, DIM, Distance, IndexType >
 
struct  PointCloud< T >
 
struct  PointCloud< T >::Point
 
struct  PointCloud_Quat< T >
 
struct  PointCloud_Quat< T >::Point
 
struct  PointCloud_Orient< T >
 
struct  PointCloud_Orient< T >::Point
 

Namespaces

namespace  nanoflann
 

Macros

#define NANOFLANN_VERSION   0x151
 

Enumerations

enum class  nanoflann::KDTreeSingleIndexAdaptorFlags { nanoflann::KDTreeSingleIndexAdaptorFlags::None = 0 , nanoflann::KDTreeSingleIndexAdaptorFlags::SkipInitialBuildIndex = 1 }
 

Functions

template<typename T >
nanoflann::pi_const ()
 
template<typename Container >
std::enable_if< has_resize< Container >::value, void >::type nanoflann::resize (Container &c, const size_t nElements)
 
template<typename Container >
std::enable_if<!has_resize< Container >::value, void >::type nanoflann::resize (Container &c, const size_t nElements)
 
template<typename Container , typename T >
std::enable_if< has_assign< Container >::value, void >::type nanoflann::assign (Container &c, const size_t nElements, const T &value)
 
template<typename Container , typename T >
std::enable_if<!has_assign< Container >::value, void >::type nanoflann::assign (Container &c, const size_t nElements, const T &value)
 
template<typename T >
void nanoflann::save_value (std::ostream &stream, const T &value)
 
template<typename T >
void nanoflann::save_value (std::ostream &stream, const std::vector< T > &value)
 
template<typename T >
void nanoflann::load_value (std::istream &stream, T &value)
 
template<typename T >
void nanoflann::load_value (std::istream &stream, std::vector< T > &value)
 
std::underlying_type< KDTreeSingleIndexAdaptorFlags >::type nanoflann::operator& (KDTreeSingleIndexAdaptorFlags lhs, KDTreeSingleIndexAdaptorFlags rhs)
 
template<typename T >
void generateRandomPointCloudRanges (PointCloud< T > &pc, const size_t N, const T max_range_x, const T max_range_y, const T max_range_z)
 
template<typename T >
void generateRandomPointCloud (PointCloud< T > &pc, const size_t N, const T max_range=10)
 
template<typename T >
void generateRandomPointCloud_Quat (PointCloud_Quat< T > &point, const size_t N)
 
template<typename T >
void generateRandomPointCloud_Orient (PointCloud_Orient< T > &point, const size_t N)
 
void dump_mem_usage ()
 

Macro Definition Documentation

◆ NANOFLANN_VERSION

#define NANOFLANN_VERSION   0x151

Library version: 0xMmP (M=Major,m=minor,P=patch)

Function Documentation

◆ dump_mem_usage()

void dump_mem_usage ( )
inline

◆ generateRandomPointCloud()

template<typename T >
void generateRandomPointCloud ( PointCloud< T > &  pc,
const size_t  N,
const T  max_range = 10 
)
Here is the call graph for this function:

◆ generateRandomPointCloud_Orient()

template<typename T >
void generateRandomPointCloud_Orient ( PointCloud_Orient< T > &  point,
const size_t  N 
)

◆ generateRandomPointCloud_Quat()

template<typename T >
void generateRandomPointCloud_Quat ( PointCloud_Quat< T > &  point,
const size_t  N 
)

◆ generateRandomPointCloudRanges()

template<typename T >
void generateRandomPointCloudRanges ( PointCloud< T > &  pc,
const size_t  N,
const T  max_range_x,
const T  max_range_y,
const T  max_range_z 
)
Here is the caller graph for this function: