uvgVPCCenc 1.0.0
uvgVPCCenc is an open-source real-time V-PCC encoder library written in C++ from scratch.
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Public Attributes | List of all members
nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major > Struct Template Reference

#include <nanoflann.hpp>

Collaboration diagram for nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >:

Public Types

using self_t = KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >
 
using num_t = typename MatrixType::Scalar
 
using IndexType = typename MatrixType::Index
 
using metric_t = typename Distance::template traits< num_t, self_t, IndexType >::distance_t
 
using index_t = KDTreeSingleIndexAdaptor< metric_t, self_t, row_major ? MatrixType::ColsAtCompileTime :MatrixType::RowsAtCompileTime, IndexType >
 
using Offset = typename index_t::Offset
 
using Size = typename index_t::Size
 
using Dimension = typename index_t::Dimension
 

Public Member Functions

 KDTreeEigenMatrixAdaptor (const Dimension dimensionality, const std::reference_wrapper< const MatrixType > &mat, const int leaf_max_size=10)
 Constructor: takes a const ref to the matrix object with the data points.
 
 KDTreeEigenMatrixAdaptor (const self_t &)=delete
 
 ~KDTreeEigenMatrixAdaptor ()
 
void query (const num_t *query_point, const Size num_closest, IndexType *out_indices, num_t *out_distances) const
 
Interface expected by KDTreeSingleIndexAdaptor
const self_tderived () const
 
self_tderived ()
 
Size kdtree_get_point_count () const
 
num_t kdtree_get_pt (const IndexType idx, size_t dim) const
 
template<class BBOX >
bool kdtree_get_bbox (BBOX &) const
 

Public Attributes

index_tindex_
 
const std::reference_wrapper< const MatrixType > m_data_matrix
 

Detailed Description

template<class MatrixType, int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
struct nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >

An L2-metric KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage. You can select whether a row or column in the matrix represents a point in the state space.

Example of usage:

Eigen::Matrix<num_t,Eigen::Dynamic,Eigen::Dynamic> mat;
// Fill out "mat"...
Eigen::Matrix<num_t,Dynamic,Dynamic>>;
const int max_leaf = 10;
my_kd_tree_t mat_index(mat, max_leaf);
mat_index.index->...
Definition nanoflann.hpp:2171
Template Parameters
DIMIf set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations.
DistanceThe distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
row_majorIf set to true the rows of the matrix are used as the points, if set to false the columns of the matrix are used as the points.

Member Typedef Documentation

◆ Dimension

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::Dimension = typename index_t::Dimension

◆ index_t

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::index_t = KDTreeSingleIndexAdaptor<metric_t, self_t, row_major ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime, IndexType>

◆ IndexType

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::IndexType = typename MatrixType::Index

◆ metric_t

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::metric_t = typename Distance::template traits<num_t, self_t, IndexType>::distance_t

◆ num_t

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::num_t = typename MatrixType::Scalar

◆ Offset

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::Offset = typename index_t::Offset

The kd-tree index for the user to call its methods as usual with any other FLANN index.

◆ self_t

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::self_t = KDTreeEigenMatrixAdaptor<MatrixType, DIM, Distance, row_major>

◆ Size

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
using nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::Size = typename index_t::Size

Constructor & Destructor Documentation

◆ KDTreeEigenMatrixAdaptor() [1/2]

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::KDTreeEigenMatrixAdaptor ( const Dimension  dimensionality,
const std::reference_wrapper< const MatrixType > &  mat,
const int  leaf_max_size = 10 
)
inlineexplicit

Constructor: takes a const ref to the matrix object with the data points.

◆ KDTreeEigenMatrixAdaptor() [2/2]

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::KDTreeEigenMatrixAdaptor ( const self_t )
delete

Deleted copy constructor

◆ ~KDTreeEigenMatrixAdaptor()

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::~KDTreeEigenMatrixAdaptor ( )
inline

Member Function Documentation

◆ derived() [1/2]

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
self_t & nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::derived ( )
inline

◆ derived() [2/2]

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
const self_t & nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::derived ( ) const
inline

◆ kdtree_get_bbox()

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
template<class BBOX >
bool nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::kdtree_get_bbox ( BBOX &  ) const
inline

◆ kdtree_get_point_count()

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
Size nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::kdtree_get_point_count ( ) const
inline

◆ kdtree_get_pt()

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
num_t nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::kdtree_get_pt ( const IndexType  idx,
size_t  dim 
) const
inline

◆ query()

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
void nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::query ( const num_t query_point,
const Size  num_closest,
IndexType out_indices,
num_t out_distances 
) const
inline

Query for the num_closest closest points to a given point (entered as query_point[0:dim-1]). Note that this is a short-cut method for index->findNeighbors(). The user can also call index->... methods as desired.

Note
If L2 norms are used, all returned distances are actually squared distances.
Here is the call graph for this function:

Member Data Documentation

◆ index_

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
index_t* nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::index_

◆ m_data_matrix

template<class MatrixType , int32_t DIM = -1, class Distance = nanoflann::metric_L2, bool row_major = true>
const std::reference_wrapper<const MatrixType> nanoflann::KDTreeEigenMatrixAdaptor< MatrixType, DIM, Distance, row_major >::m_data_matrix

The documentation for this struct was generated from the following file: