uvgVPCCenc 1.0.0
uvgVPCCenc is an open-source real-time V-PCC encoder library written in C++ from scratch.
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Public Attributes | List of all members
nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType > Class Template Reference

#include <nanoflann.hpp>

Inheritance diagram for nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >:
Collaboration diagram for nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >:

Public Types

using Base = typename nanoflann::KDTreeBaseClass< nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >, Distance, DatasetAdaptor, DIM, IndexType >
 
using Offset = typename Base::Offset
 
using Size = typename Base::Size
 
using Dimension = typename Base::Dimension
 
using ElementType = typename Base::ElementType
 
using DistanceType = typename Base::DistanceType
 
using Node = typename Base::Node
 
using NodePtr = Node *
 
using Interval = typename Base::Interval
 
using BoundingBox = typename Base::BoundingBox
 
using distance_vector_t = typename Base::distance_vector_t
 
- Public Types inherited from nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >
using ElementType = typename Distance::ElementType
 
using DistanceType = typename Distance::DistanceType
 
using Offset = typename decltype(vAcc_)::size_type
 
using Size = typename decltype(vAcc_)::size_type
 
using Dimension = int32_t
 
using NodePtr = Node *
 
using NodeConstPtr = const Node *
 
using BoundingBox = typename array_or_vector< DIM, Interval >::type
 
using distance_vector_t = typename array_or_vector< DIM, DistanceType >::type
 

Public Member Functions

 KDTreeSingleIndexAdaptor (const KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType > &)=delete
 
template<class... Args>
 KDTreeSingleIndexAdaptor (const Dimension dimensionality, const DatasetAdaptor &inputData, const KDTreeSingleIndexAdaptorParams &params, Args &&... args)
 
 KDTreeSingleIndexAdaptor (const Dimension dimensionality, const DatasetAdaptor &inputData, const KDTreeSingleIndexAdaptorParams &params={})
 
void buildIndex ()
 
void init_vind ()
 
void computeBoundingBox (BoundingBox &bbox)
 
template<class RESULTSET >
bool searchLevel (RESULTSET &result_set, const ElementType *vec, const NodePtr node, DistanceType mindist, distance_vector_t &dists, const float epsError) const
 
void saveIndex (std::ostream &stream) const
 
void loadIndex (std::istream &stream)
 
Query methods
template<typename RESULTSET >
bool findNeighbors (RESULTSET &result, const ElementType *vec, const SearchParameters &searchParams={}) const
 
Size knnSearch (const ElementType *query_point, const Size num_closest, IndexType *out_indices, DistanceType *out_distances) const
 
Size radiusSearch (const ElementType *query_point, const DistanceType &radius, std::vector< ResultItem< IndexType, DistanceType > > &IndicesDists, const SearchParameters &searchParams={}) const
 
template<class SEARCH_CALLBACK >
Size radiusSearchCustomCallback (const ElementType *query_point, SEARCH_CALLBACK &resultSet, const SearchParameters &searchParams={}) const
 
Size rknnSearch (const ElementType *query_point, const Size num_closest, IndexType *out_indices, DistanceType *out_distances, const DistanceType &radius) const
 
- Public Member Functions inherited from nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >
void freeIndex (Derived &obj)
 
Size size (const Derived &obj) const
 
Size veclen (const Derived &obj)
 
ElementType dataset_get (const Derived &obj, IndexType element, Dimension component) const
 Helper accessor to the dataset points:
 
Size usedMemory (Derived &obj)
 
void computeMinMax (const Derived &obj, Offset ind, Size count, Dimension element, ElementType &min_elem, ElementType &max_elem)
 
NodePtr divideTree (Derived &obj, const Offset left, const Offset right, BoundingBox &bbox)
 
NodePtr divideTreeConcurrent (Derived &obj, const Offset left, const Offset right, BoundingBox &bbox, std::atomic< unsigned int > &thread_count, std::mutex &mutex)
 
void middleSplit_ (const Derived &obj, const Offset ind, const Size count, Offset &index, Dimension &cutfeat, DistanceType &cutval, const BoundingBox &bbox)
 
void planeSplit (const Derived &obj, const Offset ind, const Size count, const Dimension cutfeat, const DistanceType &cutval, Offset &lim1, Offset &lim2)
 
DistanceType computeInitialDistances (const Derived &obj, const ElementType *vec, distance_vector_t &dists) const
 
void saveIndex (const Derived &obj, std::ostream &stream) const
 
void loadIndex (Derived &obj, std::istream &stream)
 

Public Attributes

const DatasetAdaptor & dataset_
 
const KDTreeSingleIndexAdaptorParams indexParams
 
Distance distance_
 
- Public Attributes inherited from nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >
std::vector< IndexType > vAcc_
 
NodePtr root_node_ = nullptr
 
Size leaf_max_size_ = 0
 
Size n_thread_build_ = 1
 Number of thread for concurrent tree build.
 
Size size_ = 0
 Number of current points in the dataset.
 
Size size_at_index_build_ = 0
 Number of points in the dataset when the index was built.
 
Dimension dim_ = 0
 Dimensionality of each data point.
 
BoundingBox root_bbox_
 
PooledAllocator pool_
 

Additional Inherited Members

- Static Public Member Functions inherited from nanoflann::KDTreeBaseClass< Derived, Distance, DatasetAdaptor, DIM, IndexType >
static void save_tree (const Derived &obj, std::ostream &stream, const NodeConstPtr tree)
 
static void load_tree (Derived &obj, std::istream &stream, NodePtr &tree)
 

Detailed Description

template<typename Distance, class DatasetAdaptor, int32_t DIM = -1, typename IndexType = uint32_t>
class nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >

kd-tree static index

Contains the k-d trees and other information for indexing a set of points for nearest-neighbor matching.

The class "DatasetAdaptor" must provide the following interface (can be non-virtual, inlined methods):

// Must return the number of data poins
size_t kdtree_get_point_count() const { ... }
// Must return the dim'th component of the idx'th point in the class:
T kdtree_get_pt(const size_t idx, const size_t dim) const { ... }
// Optional bounding-box computation: return false to default to a standard
bbox computation loop.
// Return true if the BBOX was already computed by the class and returned
in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3
for point clouds) template <class BBOX> bool kdtree_get_bbox(BBOX &bb) const
{
bb[0].low = ...; bb[0].high = ...; // 0th dimension limits
bb[1].low = ...; bb[1].high = ...; // 1st dimension limits
...
return true;
}
Template Parameters
DatasetAdaptorThe user-provided adaptor, which must be ensured to have a lifetime equal or longer than the instance of this class.
DistanceThe distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
DIMDimensionality of data points (e.g. 3 for 3D points)
IndexTypeWill be typically size_t or int

Member Typedef Documentation

◆ Base

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Base = typename nanoflann::KDTreeBaseClass<nanoflann::KDTreeSingleIndexAdaptor<Distance, DatasetAdaptor, DIM, IndexType>, Distance, DatasetAdaptor, DIM, IndexType>

◆ BoundingBox

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::BoundingBox = typename Base::BoundingBox

Define "BoundingBox" as a fixed-size or variable-size container depending on "DIM"

◆ Dimension

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Dimension = typename Base::Dimension

◆ distance_vector_t

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::distance_vector_t = typename Base::distance_vector_t

Define "distance_vector_t" as a fixed-size or variable-size container depending on "DIM"

◆ DistanceType

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::DistanceType = typename Base::DistanceType

◆ ElementType

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::ElementType = typename Base::ElementType

◆ Interval

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Interval = typename Base::Interval

◆ Node

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Node = typename Base::Node

◆ NodePtr

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::NodePtr = Node*

◆ Offset

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Offset = typename Base::Offset

◆ Size

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
using nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Size = typename Base::Size

Constructor & Destructor Documentation

◆ KDTreeSingleIndexAdaptor() [1/3]

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::KDTreeSingleIndexAdaptor ( const KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType > &  )
explicitdelete

Deleted copy constructor

◆ KDTreeSingleIndexAdaptor() [2/3]

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
template<class... Args>
nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::KDTreeSingleIndexAdaptor ( const Dimension  dimensionality,
const DatasetAdaptor &  inputData,
const KDTreeSingleIndexAdaptorParams params,
Args &&...  args 
)
inlineexplicit

KDTree constructor

Refer to docs in README.md or online in https://github.com/jlblancoc/nanoflann

The KD-Tree point dimension (the length of each point in the datase, e.g. 3 for 3D points) is determined by means of:

  • The DIM template parameter if >0 (highest priority)
  • Otherwise, the dimensionality parameter of this constructor.
Parameters
inputDataDataset with the input features. Its lifetime must be equal or longer than that of the instance of this class.
paramsBasically, the maximum leaf node size

Note that there is a variable number of optional additional parameters which will be forwarded to the metric class constructor. Refer to example examples/pointcloud_custom_metric.cpp for a use case.

◆ KDTreeSingleIndexAdaptor() [3/3]

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::KDTreeSingleIndexAdaptor ( const Dimension  dimensionality,
const DatasetAdaptor &  inputData,
const KDTreeSingleIndexAdaptorParams params = {} 
)
inlineexplicit

Member Function Documentation

◆ buildIndex()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
void nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::buildIndex ( )
inline

Builds the index

◆ computeBoundingBox()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
void nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::computeBoundingBox ( BoundingBox bbox)
inline
Here is the call graph for this function:

◆ findNeighbors()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
template<typename RESULTSET >
bool nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::findNeighbors ( RESULTSET &  result,
const ElementType vec,
const SearchParameters searchParams = {} 
) const
inline

Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside the result object.

Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors

Template Parameters
RESULTSETShould be any ResultSet<DistanceType>
Returns
True if the requested neighbors could be found.
See also
knnSearch, radiusSearch
Note
If L2 norms are used, all returned distances are actually squared distances.
Here is the caller graph for this function:

◆ init_vind()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
void nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::init_vind ( )
inline

Make sure the auxiliary list vind has the same size than the current dataset, and re-generate if size has changed.

◆ knnSearch()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
Size nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::knnSearch ( const ElementType query_point,
const Size  num_closest,
IndexType *  out_indices,
DistanceType out_distances 
) const
inline

Find the "num_closest" nearest neighbors to the query_point[0:dim-1]. Their indices and distances are stored in the provided pointers to array/vector.

See also
radiusSearch, findNeighbors
Returns
Number N of valid points in the result set.
Note
If L2 norms are used, all returned distances are actually squared distances.
Only the first N entries in out_indices and out_distances will be valid. Return is less than num_closest only if the number of elements in the tree is less than num_closest.
Here is the call graph for this function:

◆ loadIndex()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
void nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::loadIndex ( std::istream &  stream)
inline

Loads a previous index from a binary file. IMPORTANT NOTE: The set of data points is NOT stored in the file, so the index object must be constructed associated to the same source of data points used while building the index. See the example: examples/saveload_example.cpp

See also
loadIndex

◆ radiusSearch()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
Size nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::radiusSearch ( const ElementType query_point,
const DistanceType radius,
std::vector< ResultItem< IndexType, DistanceType > > &  IndicesDists,
const SearchParameters searchParams = {} 
) const
inline

Find all the neighbors to query_point[0:dim-1] within a maximum radius. The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. Previous contents of IndicesDists are cleared.

If searchParams.sorted==true, the output list is sorted by ascending distances.

For a better performance, it is advisable TODO(lf)a .reserve() on the vector if you have any wild guess about the number of expected matches.

See also
knnSearch, findNeighbors, radiusSearchCustomCallback
Returns
The number of points within the given radius (i.e. indices.size() or dists.size() )
Note
If L2 norms are used, search radius and all returned distances are actually squared distances.

◆ radiusSearchCustomCallback()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
template<class SEARCH_CALLBACK >
Size nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::radiusSearchCustomCallback ( const ElementType query_point,
SEARCH_CALLBACK &  resultSet,
const SearchParameters searchParams = {} 
) const
inline

Just like radiusSearch() but with a custom callback class for each point found in the radius of the query. See the source of RadiusResultSet<> as a start point for your own classes.

See also
radiusSearch

◆ rknnSearch()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
Size nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::rknnSearch ( const ElementType query_point,
const Size  num_closest,
IndexType *  out_indices,
DistanceType out_distances,
const DistanceType radius 
) const
inline

Find the first N neighbors to query_point[0:dim-1] within a maximum radius. The output is given as a vector of pairs, of which the first element is a point index and the second the corresponding distance. Previous contents of IndicesDists are cleared.

See also
radiusSearch, findNeighbors
Returns
Number N of valid points in the result set.
Note
If L2 norms are used, all returned distances are actually squared distances.
Only the first N entries in out_indices and out_distances will be valid. Return is less than num_closest only if the number of elements in the tree is less than num_closest.
Here is the call graph for this function:

◆ saveIndex()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
void nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::saveIndex ( std::ostream &  stream) const
inline

Stores the index in a binary file. IMPORTANT NOTE: The set of data points is NOT stored in the file, so when loading the index object it must be constructed associated to the same source of data points used while building it. See the example: examples/saveload_example.cpp

See also
loadIndex

◆ searchLevel()

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
template<class RESULTSET >
bool nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::searchLevel ( RESULTSET &  result_set,
const ElementType vec,
const NodePtr  node,
DistanceType  mindist,
distance_vector_t dists,
const float  epsError 
) const
inline

Performs an exact search in the tree starting from a node.

Template Parameters
RESULTSETShould be any ResultSet<DistanceType>
Returns
true if the search should be continued, false if the results are sufficient

Member Data Documentation

◆ dataset_

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
const DatasetAdaptor& nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::dataset_

The data source used by this index

◆ distance_

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
Distance nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::distance_

◆ indexParams

template<typename Distance , class DatasetAdaptor , int32_t DIM = -1, typename IndexType = uint32_t>
const KDTreeSingleIndexAdaptorParams nanoflann::KDTreeSingleIndexAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::indexParams

The documentation for this class was generated from the following file: