uvgVPCCenc 1.0.0
uvgVPCCenc is an open-source real-time V-PCC encoder library written in C++ from scratch.
|
#include <nanoflann.hpp>
Public Types | |
using | ElementType = typename Distance::ElementType |
using | DistanceType = typename Distance::DistanceType |
using | Offset = typename KDTreeSingleIndexDynamicAdaptor_< Distance, DatasetAdaptor, DIM >::Offset |
using | Size = typename KDTreeSingleIndexDynamicAdaptor_< Distance, DatasetAdaptor, DIM >::Size |
using | Dimension = typename KDTreeSingleIndexDynamicAdaptor_< Distance, DatasetAdaptor, DIM >::Dimension |
Public Member Functions | |
const std::vector< index_container_t > & | getAllIndices () const |
KDTreeSingleIndexDynamicAdaptor (const int dimensionality, const DatasetAdaptor &inputData, const KDTreeSingleIndexAdaptorParams ¶ms=KDTreeSingleIndexAdaptorParams(), const size_t maximumPointCount=1000000000U) | |
KDTreeSingleIndexDynamicAdaptor (const KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType > &)=delete | |
void | addPoints (IndexType start, IndexType end) |
void | removePoint (size_t idx) |
template<typename RESULTSET > | |
bool | findNeighbors (RESULTSET &result, const ElementType *vec, const SearchParameters &searchParams={}) const |
Public Attributes | |
Distance | distance_ |
Protected Types | |
using | index_container_t = KDTreeSingleIndexDynamicAdaptor_< Distance, DatasetAdaptor, DIM, IndexType > |
Protected Attributes | |
Size | leaf_max_size_ |
Size | treeCount_ |
Size | pointCount_ |
const DatasetAdaptor & | dataset_ |
The source of our data. | |
std::vector< int > | treeIndex_ |
std::unordered_set< int > | removedPoints_ |
KDTreeSingleIndexAdaptorParams | index_params_ |
Dimension | dim_ |
Dimensionality of each data point. | |
std::vector< index_container_t > | index_ |
kd-tree dynaimic index
class to create multiple static index and merge their results to behave as single dynamic index as proposed in Logarithmic Approach.
Example of usage: examples/dynamic_pointcloud_example.cpp
DatasetAdaptor | The user-provided adaptor (see comments above). |
Distance | The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc. |
DIM | Dimensionality of data points (e.g. 3 for 3D points) |
IndexType | Will be typically size_t or int |
using nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Dimension = typename KDTreeSingleIndexDynamicAdaptor_<Distance, DatasetAdaptor, DIM>::Dimension |
using nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::DistanceType = typename Distance::DistanceType |
using nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::ElementType = typename Distance::ElementType |
|
protected |
using nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Offset = typename KDTreeSingleIndexDynamicAdaptor_<Distance, DatasetAdaptor, DIM>::Offset |
using nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::Size = typename KDTreeSingleIndexDynamicAdaptor_<Distance, DatasetAdaptor, DIM>::Size |
|
inlineexplicit |
KDTree constructor
Refer to docs in README.md or online in https://github.com/jlblancoc/nanoflann
The KD-Tree point dimension (the length of each point in the datase, e.g. 3 for 3D points) is determined by means of:
inputData | Dataset with the input features. Its lifetime must be equal or longer than that of the instance of this class. |
params | Basically, the maximum leaf node size |
|
explicitdelete |
Deleted copy constructor
|
inline |
Add points to the set, Inserts all points from [start, end]
|
inline |
Find set of nearest neighbors to vec[0:dim-1]. Their indices are stored inside the result object.
Params: result = the result object in which the indices of the nearest-neighbors are stored vec = the vector for which to search the nearest neighbors
RESULTSET | Should be any ResultSet<DistanceType> |
|
inline |
Get a const ref to the internal list of indices; the number of indices is adapted dynamically as the dataset grows in size.
|
inline |
Remove a point from the set (Lazy Deletion)
|
protected |
The source of our data.
The dataset used by this index
|
protected |
Dimensionality of each data point.
Distance nanoflann::KDTreeSingleIndexDynamicAdaptor< Distance, DatasetAdaptor, DIM, IndexType >::distance_ |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
treeIndex[idx] is the index of tree in which point at idx is stored. treeIndex[idx]=-1 means that point has been removed.